[image:]

09_Security_Governance/DB_Unity_Catalog_Governance.docx

Databricks Unity Catalog Governance Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Governance Team

1. Executive Summary
This guide provides comprehensive patterns for implementing data governance using Unity Catalog on Databricks. Unity Catalog is Databricks' unified governance solution that provides centralized access control, auditing, lineage, and data discovery across all data and AI assets. This guide covers the governance framework, access control patterns, data classification, lineage tracking, and compliance implementation.
Why Unity Catalog?
Traditional data platforms suffer from governance challenges:
Fragmented Access Control: Different systems have different permission models
No Unified Audit Trail: Difficult to track who accessed what data
Missing Lineage: No visibility into data origins and transformations
Poor Discovery: Users can't find the data they need
Compliance Gaps: Manual processes for regulatory requirements
Unity Catalog solves these challenges with:
Unified Namespace: Single catalog.schema.table hierarchy across workspaces
Centralized Permissions: One place to manage all access controls
Automatic Lineage: Track data flow from source to consumption
Built-in Discovery: Search and browse data assets with metadata
Audit Everything: Complete audit trail for compliance
2. Unity Catalog Architecture
2.1 Governance Hierarchy
┌───┐
│ UNITY CATALOG GOVERNANCE ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ METASTORE │ │
│ │ • Account-level container for all data assets │ │
│ │ • Manages identity, access control, and audit │ │
│ │ • One metastore per region (can serve multiple workspaces) │ │
│ └───┘ │
│ │ │
│ ┌────────────────────────────┼────────────────────────────┐ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────────┐ ┌─────────────────────────┐ ┌─────────────────────┐ │
│ │ CATALOG │ │ CATALOG │ │ CATALOG │ │
│ │ (production) │ │ (staging) │ │ (development) │ │
│ │ │ │ │ │ │ │
│ │ • Logical │ │ • Data isolation │ │ • Self-service │ │
│ │ grouping │ │ • Environment │ │ exploration │ │
│ │ • Access │ │ separation │ │ • Sandboxed │ │
│ │ boundary │ │ │ │ testing │ │
│ └────────┬────────┘ └────────────┬────────────┘ └──────────┬──────────┘ │
│ │ │ │ │
│ ┌─────┴─────┐ ┌─────┴─────┐ ┌──────┴─────┐ │
│ │ SCHEMAS │ │ SCHEMAS │ │ SCHEMAS │ │
│ │ │ │ │ │ │ │
│ │ • raw │ │ • staging │ │ • sandbox │ │
│ │ • curated │ │ • testing │ │ • explore │ │
│ │ • analytics│ │ │ │ │ │
│ │ • ml │ │ │ │ │ │
│ └─────┬─────┘ └───────────┘ └────────────┘ │
│ │ │
│ ┌─────┴───┐ │
│ │ DATA ASSETS │ │
│ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ │
│ │ │ Tables │ │ Views │ │Functions│ │ Models │ │ │
│ │ │ (Delta) │ │ (SQL) │ │ (UDFs) │ │(MLflow) │ │ │
│ │ └─────────┘ └─────────┘ └─────────┘ └─────────┘ │ │
│ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ │
│ │ │ Volumes │ │Notebooks│ │Dashboards│ │ │
│ │ │ (Files) │ │ │ │ │ │ │
│ │ └─────────┘ └─────────┘ └─────────┘ │ │
│ └───┘ │
│ │
└───┘
2.2 Governance Components
	Component
	Purpose
	Key Features

	Metastore
	Root container
	Identity federation, storage credentials

	Catalogs
	Logical grouping
	Environment isolation, ownership

	Schemas
	Namespace
	Table organization, default location

	Tables
	Structured data
	Managed/External, Delta format

	Views
	Virtual tables
	Security views, materialized views

	Volumes
	Unstructured data
	Files, images, documents

	Functions
	Custom logic
	UDFs, stored procedures

	Models
	ML assets
	MLflow models, serving endpoints

3. Setting Up Unity Catalog
3.1 Metastore Configuration
from databricks.sdk import AccountClient
from databricks.sdk.service.catalog import (
 MetastoreInfo,
 CreateMetastoreRequest,
 StorageCredentialInfo
)

Initialize account client
account = AccountClient(
 host="https://accounts.cloud.databricks.com",
 account_id="your-account-id"
)

Create metastore (one per region)
metastore = account.metastores.create(
 name="production-metastore-us-east-1",
 storage_root="s3://company-unity-catalog-us-east-1/metastore",
 region="us-east-1"
)

Assign metastore to workspaces
account.metastores.assign(
 metastore_id=metastore.metastore_id,
 workspace_id=1234567890123456
)

print(f"Metastore created: {metastore.metastore_id}")
3.2 Storage Credentials and External Locations
Storage credentials define how Unity Catalog accesses cloud storage. External locations specify where data can be stored.
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Create storage credential for AWS
This IAM role allows Unity Catalog to access S3
aws_credential = w.storage_credentials.create(
 name="production-s3-credential",
 aws_iam_role={
 "role_arn": "arn:aws:iam::123456789012:role/unity-catalog-access-role"
 },
 comment="Production data lake access"
)

Create external location
Defines a managed path where tables can be created
production_location = w.external_locations.create(
 name="production-data-lake",
 url="s3://company-production-data-lake/",
 credential_name="production-s3-credential",
 comment="Production data lake location"
)

Grant access to external location
w.grants.update(
 securable_type="external-location",
 full_name="production-data-lake",
 changes=[
 {
 "principal": "data-engineers",
 "add": ["CREATE_EXTERNAL_TABLE", "READ_FILES", "WRITE_FILES"]
 }
]
)
3.3 Creating the Catalog Hierarchy
-- Create environment-based catalogs
CREATE CATALOG IF NOT EXISTS development
COMMENT 'Development environment for experimentation and testing';

CREATE CATALOG IF NOT EXISTS staging
COMMENT 'Staging environment for pre-production validation';

CREATE CATALOG IF NOT EXISTS production
COMMENT 'Production environment for business-critical data';

-- Create schemas within production catalog
-- Schemas organize tables by domain or data layer

-- Raw data layer (bronze)
CREATE SCHEMA IF NOT EXISTS production.raw
COMMENT 'Raw data from source systems (bronze layer)'
MANAGED LOCATION 's3://company-production-data-lake/raw';

-- Curated data layer (silver)
CREATE SCHEMA IF NOT EXISTS production.curated
COMMENT 'Cleaned and validated data (silver layer)'
MANAGED LOCATION 's3://company-production-data-lake/curated';

-- Analytics layer (gold)
CREATE SCHEMA IF NOT EXISTS production.analytics
COMMENT 'Business-ready analytics tables (gold layer)'
MANAGED LOCATION 's3://company-production-data-lake/analytics';

-- ML features and models
CREATE SCHEMA IF NOT EXISTS production.ml
COMMENT 'Machine learning features and model artifacts'
MANAGED LOCATION 's3://company-production-data-lake/ml';

-- Sensitive data with additional controls
CREATE SCHEMA IF NOT EXISTS production.sensitive
COMMENT 'PII and sensitive data with restricted access'
MANAGED LOCATION 's3://company-production-data-lake/sensitive';
4. Access Control Patterns
4.1 Permission Inheritance Model
Unity Catalog uses a hierarchical permission model where permissions can be granted at any level and inherited by child objects:
 METASTORE
 │
 ┌─────────┴─────────┐
 ▼ ▼
 CATALOG CATALOG
 (inherits) (inherits)
 │ │
 ┌──────┴──────┐ ...
 ▼ ▼
 SCHEMA SCHEMA
 (inherits) (inherits)
 │ │
 ┌──┴──┐ ┌──┴──┐
 ▼ ▼ ▼ ▼
 TABLE VIEW TABLE VIEW
4.2 Role-Based Access Control (RBAC)
-- Create groups for role-based access
-- Groups should mirror your organization structure

-- 1. Data Platform Team (full admin)
-- Managed via SCIM from identity provider

-- 2. Data Engineers (create/modify data)
GRANT USE CATALOG ON CATALOG production TO `data-engineers`;
GRANT USE SCHEMA ON SCHEMA production.raw TO `data-engineers`;
GRANT USE SCHEMA ON SCHEMA production.curated TO `data-engineers`;
GRANT CREATE TABLE ON SCHEMA production.raw TO `data-engineers`;
GRANT CREATE TABLE ON SCHEMA production.curated TO `data-engineers`;
GRANT MODIFY ON SCHEMA production.raw TO `data-engineers`;
GRANT MODIFY ON SCHEMA production.curated TO `data-engineers`;
GRANT SELECT ON SCHEMA production.raw TO `data-engineers`;
GRANT SELECT ON SCHEMA production.curated TO `data-engineers`;

-- 3. Data Scientists (read data, create ML assets)
GRANT USE CATALOG ON CATALOG production TO `data-scientists`;
GRANT USE SCHEMA ON SCHEMA production.curated TO `data-scientists`;
GRANT USE SCHEMA ON SCHEMA production.analytics TO `data-scientists`;
GRANT USE SCHEMA ON SCHEMA production.ml TO `data-scientists`;
GRANT SELECT ON SCHEMA production.curated TO `data-scientists`;
GRANT SELECT ON SCHEMA production.analytics TO `data-scientists`;
GRANT CREATE TABLE ON SCHEMA production.ml TO `data-scientists`;
GRANT CREATE FUNCTION ON SCHEMA production.ml TO `data-scientists`;

-- 4. Data Analysts (read-only analytics access)
GRANT USE CATALOG ON CATALOG production TO `data-analysts`;
GRANT USE SCHEMA ON SCHEMA production.analytics TO `data-analysts`;
GRANT SELECT ON SCHEMA production.analytics TO `data-analysts`;

-- 5. Business Users (specific tables only)
GRANT USE CATALOG ON CATALOG production TO `business-users`;
GRANT USE SCHEMA ON SCHEMA production.analytics TO `business-users`;
GRANT SELECT ON TABLE production.analytics.sales_dashboard TO `business-users`;
GRANT SELECT ON TABLE production.analytics.customer_metrics TO `business-users`;

-- 6. Sensitive Data Access (restricted)
-- Only compliance team can access PII
GRANT USE SCHEMA ON SCHEMA production.sensitive TO `compliance-team`;
GRANT SELECT ON SCHEMA production.sensitive TO `compliance-team`;
4.3 Table-Level Permissions
-- Fine-grained table permissions

-- Grant SELECT on specific table
GRANT SELECT ON TABLE production.analytics.sales_summary TO `marketing-team`;

-- Grant SELECT with specific columns (not directly supported, use views)
-- Create a view with allowed columns instead
CREATE OR REPLACE VIEW production.analytics.sales_summary_public AS
SELECT
 region,
 product_category,
 total_sales,
 transaction_count
 -- Excludes: customer_id, margin_pct (sensitive)
FROM production.analytics.sales_summary;

GRANT SELECT ON VIEW production.analytics.sales_summary_public TO `all-users`;

-- Revoke permissions
REVOKE SELECT ON TABLE production.analytics.sales_summary FROM `former-team`;

-- Show current grants
SHOW GRANTS ON TABLE production.analytics.sales_summary;
4.4 Dynamic Views for Row-Level Security
-- Row-level security using dynamic views
-- Filter data based on user's group membership

CREATE OR REPLACE VIEW production.analytics.regional_sales_v AS
SELECT *
FROM production.analytics.sales
WHERE
 -- Admins see everything
 IS_ACCOUNT_GROUP_MEMBER('data-admins')
 OR
 -- Regional teams see their region only
 (region = 'NORTH_AMERICA' AND IS_ACCOUNT_GROUP_MEMBER('na-team'))
 OR
 (region = 'EUROPE' AND IS_ACCOUNT_GROUP_MEMBER('eu-team'))
 OR
 (region = 'ASIA_PACIFIC' AND IS_ACCOUNT_GROUP_MEMBER('apac-team'));

-- Column-level masking in views
CREATE OR REPLACE VIEW production.analytics.customers_masked AS
SELECT
 customer_id,
 -- Full email for authorized users, masked for others
 CASE
 WHEN IS_ACCOUNT_GROUP_MEMBER('pii-authorized') THEN email
 ELSE REGEXP_REPLACE(email, '(.{2}).*@', '$1***@')
 END AS email,
 -- Mask phone to last 4 digits
 CASE
 WHEN IS_ACCOUNT_GROUP_MEMBER('pii-authorized') THEN phone
 ELSE CONCAT('***-***-', SUBSTR(phone, -4))
 END AS phone,
 -- Always mask SSN except compliance
 CASE
 WHEN IS_ACCOUNT_GROUP_MEMBER('compliance-team') THEN ssn
 ELSE CONCAT('***-**-', SUBSTR(ssn, -4))
 END AS ssn_masked,
 -- Non-sensitive fields
 customer_segment,
 signup_date,
 lifetime_value
FROM production.sensitive.customers;

-- Grant access to masked view, not base table
GRANT SELECT ON VIEW production.analytics.customers_masked TO `data-analysts`;
5. Data Classification and Tagging
5.1 Tag Taxonomy
Establish a consistent tag taxonomy for data classification:
-- Create tags for data classification
-- Tags are key-value pairs attached to data assets

-- Sensitivity classification
ALTER TABLE production.sensitive.customers
SET TAGS ('sensitivity' = 'confidential', 'pii' = 'true');

ALTER TABLE production.analytics.sales_summary
SET TAGS ('sensitivity' = 'internal', 'pii' = 'false');

-- Data domain classification
ALTER TABLE production.curated.customer_orders
SET TAGS ('domain' = 'customer', 'data_product' = 'customer_360');

ALTER TABLE production.curated.product_inventory
SET TAGS ('domain' = 'supply_chain', 'data_product' = 'inventory_management');

-- Data quality and freshness
ALTER TABLE production.analytics.daily_metrics
SET TAGS (
 'refresh_frequency' = 'daily',
 'sla_freshness' = '6_hours',
 'data_owner' = 'analytics-team'
);

-- Regulatory classification
ALTER TABLE production.sensitive.financial_transactions
SET TAGS (
 'regulation' = 'SOX',
 'retention_years' = '7',
 'audit_required' = 'true'
);
5.2 Querying Tags
-- Find all tables with PII
SELECT
 table_catalog,
 table_schema,
 table_name,
 tag_name,
 tag_value
FROM system.information_schema.table_tags
WHERE tag_name = 'pii' AND tag_value = 'true';

-- Find all confidential tables
SELECT
 table_catalog,
 table_schema,
 table_name
FROM system.information_schema.table_tags
WHERE tag_name = 'sensitivity'
AND tag_value = 'confidential';

-- Data ownership report
SELECT
 t.table_catalog,
 t.table_schema,
 t.table_name,
 MAX(CASE WHEN tag_name = 'data_owner' THEN tag_value END) as owner,
 MAX(CASE WHEN tag_name = 'domain' THEN tag_value END) as domain,
 MAX(CASE WHEN tag_name = 'sensitivity' THEN tag_value END) as sensitivity
FROM system.information_schema.tables t
LEFT JOIN system.information_schema.table_tags tags
 ON t.table_catalog = tags.table_catalog
 AND t.table_schema = tags.table_schema
 AND t.table_name = tags.table_name
WHERE t.table_catalog = 'production'
GROUP BY t.table_catalog, t.table_schema, t.table_name;
6. Data Lineage
6.1 Understanding Automatic Lineage
Unity Catalog automatically tracks lineage for operations performed within Databricks:
┌───┐
│ DATA LINEAGE FLOW │
├───┤
│ │
│ SOURCE SYSTEMS TRANSFORMATIONS OUTPUTS │
│ ────────────── ─────────────── ─────── │
│ │
│ ┌─────────────┐ │
│ │ S3 Files │───────┐ │
│ │ (External) │ │ │
│ └─────────────┘ │ ┌─────────────────┐ │
│ ├────────▶│ Bronze Table │ │
│ ┌─────────────┐ │ │ (raw.orders) │ │
│ │ Kafka │───────┘ └────────┬────────┘ │
│ │ (Stream) │ │ │
│ └─────────────┘ ▼ │
│ ┌─────────────────┐ │
│ │ DLT Pipeline │ │
│ │ (transform) │ │
│ └────────┬────────┘ │
│ │ │
│ ┌──────────────────┼──────────────────┐ │
│ ▼ ▼ ▼ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │Silver Table │ │Silver Table │ │Silver Table │ │
│ │(orders) │ │(customers) │ │(products) │ │
│ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ │
│ │ │ │ │
│ └────────┬─────────┴─────────┬────────┘ │
│ ▼ ▼ │
│ ┌─────────────┐ ┌─────────────┐ │
│ │ Gold Table │ │ ML Model │ │
│ │(analytics) │ │ (churn) │ │
│ └──────┬──────┘ └─────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────┐ │
│ │ Dashboard │ │
│ │ (Power BI) │ │
│ └─────────────┘ │
│ │
└───┘
6.2 Querying Lineage
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Get lineage for a specific table
lineage = w.lineage.get_table_lineage(
 table_name="production.analytics.customer_metrics"
)

Print upstream dependencies
print("Upstream tables (data sources):")
for upstream in lineage.upstreams:
 print(f" - {upstream.tableInfo.name}")

Print downstream dependencies
print("\nDownstream consumers:")
for downstream in lineage.downstreams:
 print(f" - {downstream.tableInfo.name}")
-- Query lineage information via system tables
-- Find all tables that depend on a source table

-- Upstream lineage: What tables feed into this table?
SELECT
 source_table_full_name,
 target_table_full_name,
 source_type
FROM system.access.table_lineage
WHERE target_table_full_name = 'production.analytics.customer_metrics';

-- Downstream lineage: What tables consume this table?
SELECT
 source_table_full_name,
 target_table_full_name,
 target_type
FROM system.access.table_lineage
WHERE source_table_full_name = 'production.curated.customers';

-- Full lineage path for impact analysis
WITH RECURSIVE lineage_path AS (
 -- Base case: direct dependents
 SELECT
 source_table_full_name,
 target_table_full_name,
 1 as depth,
 ARRAY(source_table_full_name, target_table_full_name) as path
 FROM system.access.table_lineage
 WHERE source_table_full_name = 'production.raw.orders'

 UNION ALL

 -- Recursive case: indirect dependents
 SELECT
 l.source_table_full_name,
 l.target_table_full_name,
 lp.depth + 1,
 ARRAY_APPEND(lp.path, l.target_table_full_name)
 FROM system.access.table_lineage l
 JOIN lineage_path lp ON l.source_table_full_name = lp.target_table_full_name
 WHERE lp.depth < 5 -- Limit depth
)
SELECT DISTINCT target_table_full_name, depth, path
FROM lineage_path
ORDER BY depth;
6.3 Column-Level Lineage
-- Column-level lineage shows field-level data flow
SELECT
 source_table_full_name,
 source_column_name,
 target_table_full_name,
 target_column_name
FROM system.access.column_lineage
WHERE target_table_full_name = 'production.analytics.customer_summary'
ORDER BY target_column_name;
7. Audit and Compliance
7.1 System Tables for Auditing
Unity Catalog provides system tables for comprehensive auditing:
-- Query audit logs for data access
SELECT
 event_time,
 user_identity.email as user,
 action_name,
 request_params.full_name_arg as table_name,
 source_ip_address
FROM system.access.audit
WHERE event_date >= current_date() - INTERVAL 7 DAYS
AND service_name = 'unityCatalog'
AND action_name IN ('getTable', 'readTable', 'writeTable')
ORDER BY event_time DESC;

-- Track permission changes
SELECT
 event_time,
 user_identity.email as changed_by,
 action_name,
 request_params.securable_type,
 request_params.securable_full_name,
 request_params.changes
FROM system.access.audit
WHERE event_date >= current_date() - INTERVAL 30 DAYS
AND action_name IN ('updatePermissions', 'grantPermission', 'revokePermission')
ORDER BY event_time DESC;

-- Identify sensitive data access
SELECT
 DATE(event_time) as access_date,
 user_identity.email as user,
 COUNT(*) as access_count,
 COLLECT_SET(request_params.full_name_arg) as tables_accessed
FROM system.access.audit a
JOIN system.information_schema.table_tags t
 ON a.request_params.full_name_arg =
 CONCAT(t.table_catalog, '.', t.table_schema, '.', t.table_name)
WHERE t.tag_name = 'sensitivity'
AND t.tag_value = 'confidential'
AND a.event_date >= current_date() - INTERVAL 30 DAYS
GROUP BY DATE(event_time), user_identity.email;
7.2 Compliance Reports
-- Create compliance views for reporting

-- View: Data Access Summary
CREATE OR REPLACE VIEW governance.data_access_summary AS
SELECT
 DATE(event_time) as access_date,
 user_identity.email as user,
 request_params.full_name_arg as data_asset,
 action_name,
 CASE
 WHEN request_params.full_name_arg LIKE '%.sensitive.%' THEN 'Sensitive'
 WHEN request_params.full_name_arg LIKE '%.raw.%' THEN 'Raw'
 WHEN request_params.full_name_arg LIKE '%.analytics.%' THEN 'Analytics'
 ELSE 'Other'
 END as data_layer,
 response.status_code
FROM system.access.audit
WHERE service_name = 'unityCatalog';

-- View: Permission Changes Audit Trail
CREATE OR REPLACE VIEW governance.permission_changes AS
SELECT
 event_time,
 user_identity.email as changed_by,
 request_params.securable_type as asset_type,
 request_params.securable_full_name as asset_name,
 request_params.principal as affected_principal,
 CASE
 WHEN action_name LIKE '%grant%' THEN 'GRANT'
 WHEN action_name LIKE '%revoke%' THEN 'REVOKE'
 ELSE action_name
 END as change_type,
 request_params.changes as permissions_changed
FROM system.access.audit
WHERE action_name IN ('updatePermissions', 'grantPermission', 'revokePermission');

-- Monthly compliance report
SELECT
 DATE_TRUNC('month', access_date) as month,
 data_layer,
 COUNT(DISTINCT user) as unique_users,
 COUNT(*) as total_accesses,
 COUNT(DISTINCT data_asset) as unique_assets
FROM governance.data_access_summary
WHERE access_date >= current_date() - INTERVAL 12 MONTHS
GROUP BY DATE_TRUNC('month', access_date), data_layer
ORDER BY month DESC, data_layer;
8. Data Quality with Unity Catalog
8.1 Lakehouse Monitoring
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

Create quality monitor for a table
monitor = w.quality_monitors.create(
 table_name="production.analytics.customer_metrics",
 assets_dir="/Shared/monitoring/customer_metrics",
 output_schema_name="governance.quality_metrics",

 # Time-series monitoring
 time_series={
 "timestamp_col": "updated_at",
 "granularities": ["1 day", "1 week"]
 },

 # Custom metrics
 custom_metrics=[
 {
 "name": "null_rate_customer_id",
 "definition": "COUNT_IF(customer_id IS NULL) / COUNT(*)",
 "type": "aggregate"
 },
 {
 "name": "negative_revenue",
 "definition": "COUNT_IF(revenue < 0) / COUNT(*)",
 "type": "aggregate"
 }
],

 # Notification preferences
 notifications={
 "on_failure": {
 "email_addresses": ["data-quality@company.com"]
 }
 }
)
8.2 Data Quality Constraints
-- Add constraints to tables for quality enforcement

-- Not null constraint
ALTER TABLE production.curated.orders
ADD CONSTRAINT orders_customer_not_null
CHECK (customer_id IS NOT NULL);

-- Check constraint
ALTER TABLE production.curated.orders
ADD CONSTRAINT orders_amount_positive
CHECK (order_amount > 0);

-- Primary key constraint (informational)
ALTER TABLE production.curated.orders
ADD CONSTRAINT orders_pk PRIMARY KEY (order_id);

-- Foreign key constraint (informational)
ALTER TABLE production.curated.orders
ADD CONSTRAINT orders_customer_fk
FOREIGN KEY (customer_id) REFERENCES production.curated.customers(customer_id);

-- View constraint violations
SELECT
 constraint_catalog,
 constraint_schema,
 constraint_name,
 table_name,
 constraint_type
FROM system.information_schema.table_constraints
WHERE constraint_catalog = 'production';
9. Best Practices Checklist
9.1 Governance Checklist
	Category
	Best Practice
	Status

	Structure
	Single metastore per region
	[]

	Structure
	Environment catalogs (dev/staging/prod)
	[]

	Structure
	Domain-based schemas
	[]

	Access
	Groups map to business roles
	[]

	Access
	Least privilege principle
	[]

	Access
	Row/column security via views
	[]

	Classification
	Tag taxonomy defined
	[]

	Classification
	PII identified and tagged
	[]

	Classification
	Retention policies documented
	[]

	Lineage
	Critical paths documented
	[]

	Lineage
	Impact analysis for changes
	[]

	Audit
	Audit logs configured
	[]

	Audit
	Compliance reports scheduled
	[]

	Quality
	Monitors on critical tables
	[]

	Quality
	Constraints enforced
	[]

Document Control
	Version
	Date
	Author
	Changes

	1.0
	2025-01-29
	Data Governance Team
	Initial document

This document is maintained by the Data Governance Team. For questions or updates, contact the team via the #data-governance Slack channel.
image1.png
#MAST=CH
DIGITAL

